Felix Letkemanns kommentiert Harald Lesch

Gut erklären können, reicht nicht, es muss auch stimmen. Eine Antwort an Harald Lesch

Gut erklären können, reicht nicht, es muss auch stimmen. Das gilt auch für den Allrounder Prof. Harald Lesch, der es den Zuhörern leicht macht, ihm zu folgen. Felix Letkemanns kommentiert ein Video von Harald Lesch zum Thema Flüssigsalzreaktor. Er stellt Lesch als Verbreiter von Falschinformationen zur Rede.

“Gibt es eine Möglichkeit, Atomkraft komplett ohne Risiko zu erzeugen?”

Etwas schwieriger ist der Nachweis in Fragen der Kernenergie nicht nur deshalb, weil die Materie kompliziert ist, sondern vor allem deshalb, weil die vereinten Kräfte aus Politik, Nicht-Regierungsorganisationen und Kirchen der modernsten aller Energieformen nahezu den Garaus gemacht haben. Aber es gibt sie, die aufmerksamen Beobachter, die die Verbreiter von Falschinformationen zur Rede stellen. Aber es ist unwahrscheinlich, dass sie von Harald Lesch eine Antwort auf ihre Fragen erhalten.

“Gibt es eine Möglichkeit, Atomkraft komplett ohne Risiko zu erzeugen?” fragt Harald Lesch und stellt in dem Video den Flüssigsalzreaktor vor. “Eine sehr interessante Idee …”, sagt er.

Felix Letkemanns kommentiert Harald Leschs Vortrag mit folgenden Worten: “Harald Lesch hat ein Video zum Flüssigsalzreaktor gemacht und dort mit alternativen Fakten um sich geworfen. Deshalb eine Antwort, in der ich ein paar (nicht alle!) Sachen richtigstelle. Ich habe Herrn Lesch bereits vor ein paar Monaten eine Mail zu diesem Thema geschrieben, allerdings gab es damals nur eine automatische Antwort.”

Wie gefährlich das Tritium ist, mag man daran sehen, dass es bei Amazon käuflich erworben werden kann:  http://amzn.to/2m7jx0N

Kritik an Harald Lesch

Auch von anderer Seite kam Kritik an Leschs Video. Weil es keine “Atomlobby” gibt, kümmert sich ein privater Verein (Nuklearia) darum, dass das Wissen über die Kernenergie in Deutschland nicht gänzlich verloren geht. Rainer Klute kritisiert Harald Lesch in drei Punkten:
“1. In Hamm-Uentrop hat man einen Thorium-Hochtemperaturreaktor gebaut, aber – anders als Lesch behauptet – keinen Flüssigsalzreaktor, sondern einen Kugelhaufenreaktor. Der Kernbrennstoff befand sich in tennisballgroßen Kugeln. Dieses Reaktorkonzept hat China aufgegriffen und errichtet gerade eine Anlage, die 2018 in Betrieb gehen soll.
2. Weder der Thorium-Hochtemperaturreaktor in Hamm noch irgendein Thorium-Flüssigsalzreaktor ist ein Schneller Brüter, auch wenn Lesch das behauptet. Übrigens eignet sich ein Schneller Brüter – genauer: ein Schneller Reaktor – sehr wohl dazu, aus Atommüll Strom zu machen. Russland zeigt uns, wie das geht: http://nuklearia.de/2016/12/09/strom-aus-atommuell-schneller-reaktor-bn-800-im-kommerziellen-leistungsbetrieb/
 .
3. Lesch erklärt die Selbstregulierung eines Thorium-Flüssigsalzreaktors, als ob es ein völlig neuartiges Konzept wäre. Ist es aber nicht, denn das macht bereits jeder herkömmliche Kernkraftreaktor so, Stichwort: negativer Reaktivitätskoeffizient. Eine Ausnahme ist der russische RBMK-Reaktor (Tschernobyl-Typ), von dem leider noch 11 Blöcke laufen.”

Schlussfolgerung

Es liegt auf der Hand, dass die Schlussfolgerungen Harald Leschs nicht stimmen können, wenn er grundlegende Dinge nicht weiß – oder nicht wissen will.

Ein neuartiges Konzept für einen Flüssigsalzreaktor (Dual Fluid Reaktor) stellt das Institut für Festkörper-Kernphysik, Berlin, vor: http://dual-fluid-reaktor.de/index.php/technik

Versand kostenfrei. Der Ingenieur Michael Limburg und der Wissenschaftsjournalist Fred F. Mueller erklären in einfachen, auch für Laien leicht verständliche Weise, wie unser Stromversorgungssystem funktioniert.
Versand kostenfrei.

    ________________ WERBUNG ________________

2638014783_08f7f6f133_ad

VN:F [1.9.22_1171]
Rating: 2.0/5 (2 votes cast)

Thorium – Atomkraft ohne Risiko?

Sendetermin arte unbedingt vormerken: THORIUM – ATOMKRAFT OHNE RISIKO? Dienstag, 20. September um 20:15 Uhr (98 Min.). arte: “Thorium-Flüssigsalzreaktor: Nie gehört? Kein Wunder, seit 70 Jahren wird die Technologie von der Nuklearindustrie totgeschwiegen. Dabei könnte Thorium – kein Atommüll, kaum Risiko – die Energieproduktion komplett revolutionieren. “Thema” fragt, warum Kernkraft aus Thorium 1945 eine technologische Totgeburt war und warum es plötzlich doch der Brennstoff der Zukunft sein soll.”

 

Titelfoto: Reactor in Plainsboro, NJ – By: Paul VanDerWerf

Kernfusion ist in absehbarer Zeit keine Lösung, aber es wird daran geforscht (in Deutschland: Wendelstein 7-X, Max-Planck-Institut für Plasmaphysik, Greifswald).

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Renaissance der Kernenergie: Details zum modernen Kernreaktor-Programm

China wird in Partnerschaft mit dem US-Energieministerium bis zum Jahr 2030 moderne Kernreaktoren in den Handel bringen. Richard Martin berichtet über eine Zusammenkunft von Atomwissenschaftlern und Unternehmern im Oak Ridge National Laboratory in Tennessee. Auf der Suche nach preisgünstiger, kohlenstoffarmer Energie erlebe die Welt zurzeit eine Renaissance der Flüssigsalz-Reaktoren, sagt Richard Martin, Chefredakteur für Energie, MIT Technology Review.

Nuklearreaktoren – Die nächste Generation

Für den allmählichen Ausstieg aus der Kohle lassen sich Gründe finden, für den aus der Kernenergie nicht. Dies hat zuletzt ein Treffen von Atomwissenschaftlern und Unternehmern im Oak Ridge National Laboratory in Tennessee in der letzten Woche deutlich gemacht, von dem Richard Martin berichtet.

Die Zusammenkunft fand anlässlich des 50. Jahrestags des Experiments mit Flüssigsalzreaktoren statt. Das Programm wurde in den 1960er Jahren bei Oak Ridge durchgeführt, mit dem Ziel, einen neuartigen Kernreaktor zu bauen. Flüssigsalzreaktoren benutzen anstatt fester Brennstäbe Flüssigkeit als Brennstoff. Sie bewirkt Kernreaktionen, die das Wasser erhitzen, aus dessen Dampf schließlich Strom erzeugt wird. Flüssigsalzreaktoren haben in Bezug auf Sicherheit, Anti-Proliferation und Wirtschaftlichkeit gegenüber herkömmlichen Leichtwasserreaktoren mehrere Vorteile.

Der Jahrestag in Oak Ridge habe eine Übersicht über den Stand der zwar seit Jahrzehnten bekannten, bisher aber nicht kommerzialisierten Technologie geboten, sagt Martin. Reaktorentwickler einschließlich TerraPower, Flibe Energy, Moltex Energy, Terrestrial Energy und Southern Power hätten ihren jeweiligen Stand der Kommerzialisierung präsentiert.

China bestimmt das Tempo

Unter den Referenten befand sich laut Martin auch Xu Hongjie, der Direktor des Flüssigsalz-Reaktor-Programms am Shanghai Institut für Angewandte Physik (SINAP). China gewinnt immer noch fast drei Viertel des Stroms aus der Verbrennung von Kohle, ist der größte Emittent von Treibhausgasen in der Welt und steht unter Druck, kohlenstoffarme Energiequellen zu entwickeln, sagt Martin, weshalb China, den Angaben der World Nuclear Association folgend, seine Nuklearkapazität bis zum Jahr 2020 mehr als verdoppeln wolle. Dies betreffe sowohl konventionelle Kernkraftwerke wie fortgeschrittene Systeme, wie beispielsweise Flüssigsalzreaktoren.

Xu stellte detailliert einen mehrstufigen Plan für den Bau von Demonstrationsreaktoren in den nächsten fünf Jahren vor, die ab etwa 2030 in den Handel kommen sollen. Das Institut plane, einen 10-Megawatt-Reaktor-Prototyp mit Festbrennstoffen bis zum Jahr 2020 zu bauen, zusammen mit einem Zwei-Megawatt-Flüssigkeit-Reaktor, um den Thorium-Uran-Brennstoffkreislauf zu demonstrieren. (Thorium, das nicht spaltbar ist, wird in einem Reaktor in ein spaltbares Uran-Isotop verwandelt, das Energie erzeugt und die Kernreaktion aufrecht erhält.)

Insgesamt arbeiten 700 Kernkraft-Ingenieure an dem Flüssigsalz-Reaktor bei SINAP, eine Zahl, die andere Reaktorforschungsprogramme in diesem Bereich auf der ganzen Welt in den Schatten stelle, berichtet Martin. Bei der Forschung gehe es China auch um die Kontrolle über Tritium, ein gefährliches Wasserstoff-Isotop, das bei der Herstellung von Kernwaffen verwendet werden kann. Die Begrenzung der Erzeugung von Tritium sei ein zentrales Forschungsziel bei der Entwicklung von Flüssigsalz-Reaktoren, habe Xu Hongjie betont.

Während die meisten Teilnehmer in Oak Ridge mit den Umrissen des chinesischen Programms vertraut gewesen seien, seien dennoch viele Zuhörer über die Komplexität der bisher erzielten Fortschritte in China erschrocken gewesen. Es sei sehr überraschend, wie weit sie in vier Jahren gekommen sind, habe John Kutsch, Vizepräsident für Geschäftsentwicklungen bei Terrestrial Energy, die eine eigene Version eines Flüssigsalzreaktors entwickeln, gesagt. Es zeige, wie der Fortschritt beschleunigt werden könne, wenn sich hunderte von Forschern auf ein Projekt konzentrierten.

Unter der Schirmherrschaft der chinesischen Akademie der Wissenschaften, arbeite SINAP mit Oak Ridge zusammen, um die Forschung sowohl bei den salzgekühlten Reaktoren (die geschmolzene Salze verwenden, um die Wärme zu übertragen und um den Reaktor zu kühlen) und salzbetriebene Reaktoren (in dem der Kraftstoff in Kühlmittelsalz gelöst wird, wobei die energieerzeugenden Kernreaktionen auftreten) zu fördern. Die Vereinbarung sei im Dezember 2011 unterzeichnet worden. Seitdem seien die Bemühungen von Shanghai-Oak Ridge in der Kernkraft Gemeinschaft Gegenstand von Kontroversen und Spekulationen, insbesondere bei denjenigen, die die Förderung moderner Technologien, wie beispielsweise Salzschmelzenreaktoren und die Verwendung von Thorium als alternativen Kernbrennstoff befürworten, der sauberer und sicherer sei und häufiger vorkomme, als Uran.

Das chinesische Programm habe einige amerikanische Forscher, die China als Rivalen im Nuklearbereich sehen und die Weitergabe von Technologien, die ursprünglich in den USA entwickelt wurden, ablehnen, alarmiert, stellt Martin fest. China bemühe sich, nicht nur Reaktoren für die inländische Stromversorgung zu bauen, sondern auch ein bedeutender Lieferant von Kerntechnik für den Weltmarkt zu werden. Einige Kommentatoren hielten die US-China-Vereinbarung für eine gefährliche, auch heimtückische Form des Technologietransfers, meint Martin.

In Oak Ridge habe Xu einen Fahrplan umrissen, der zeige, dass China weiter ist als jedes andere Forschungs- und Entwicklungsprogramm (FuE) der Welt über fortschrittliche Reaktoren.

Das Dilemma der USA

Aus einer breiteren Perspektive gesehen würde die Entwicklung einer sicheren, wirtschaftlichen Kernkrafttechnologie, die vermarktet und schnell bereit gestellt werden könne, ein riesiger Erfolg im Kampf für die Begrenzung des globalen Klimawandels sein, unabhängig davon, welches Land zuerst komme, sagt Martin. Viele Entwickler der nächsten Generation von Kernreaktoren, die in den USA mit einem langen Weg zur Finanzierung und Lizenzierung ihrer Technologie konfrontiert sind, würden ihre Apparate wahrscheinlich in anderen Ländern testen, darunter auch in China.

Im Rahmen der Vereinbarung seien beide Institutionen nach Einschätzung David Holcombs, Forschungsleiter des Programms am Oak Ridge, bestrebt, die salzgekühlten Reaktoren schneller voranzubringen. Die Kooperation sei von beiden Regierungen genehmigt.

Wie alle Wissenschaftler sei auch Xu mit der Sicherung der Finanzierung für die nächsten Phasen des Programms konfrontiert. Die SINAP Forschung zum Flüssigsalzreaktor werde bis 2017 finanziert, habe Xu eingeräumt; darüber hinaus werde das Institut von der Zentralregierung, der Shanghai Regierung und aus dem privaten Sektor neue Mittel erbitten. SINAP habe vor kurzem einen Vertrag mit der Fangda Group, einem großen chinesischen Konglomerat, das Kohlenstoffprodukte, Eisen, Stahl und Chemikalien produziert, geschlossen, der die Entwicklung salzgekühlter Reaktoren zu unterstützt.

Er sei sehr zuversichtlich, habe Xu versichert, dass SINAP sein Flüssigsalz-Reaktor-Programm vermarkten werde. Denn grundsätzlich habe die chinesische Regierung die Absicht, die Entwicklung von Zukunftstechnologien im Bereich der Kernenergie zu unterstützen. Und der chinesische Markt sei sehr groß für Kernenergie-Technologien.

Die Rückkehr des deutschen Spießers

Auf der Suche nach preisgünstiger, kohlenstoffarmer Energie erlebt die Welt zurzeit eine Renaissance der Flüssigsalz-Reaktoren. Wie schnell die Umstellung vonstatten gehen kann, zeigt China. Deutschland hat sich dagegen mit seinem Beschluss zum Ausstieg aus der Kernenergie 2011 aus der Teilhabe an der Forschung und Entwicklung einer zukunftsfähigen Energieversorgung für die Menschheit verabschiedet.

Die Folgen des Ausstiegs werden sehr viel weitreichender sein, als wir uns derzeit träumen lassen. Die Konsequenzen betreffen sowohl die Zuverlässigkeit der Energieversorgung, die Deutschland aus eigener Kraft nicht mehr bewerkstelligen können wird, als auch die Abwanderung der Industrie, die Deutschland bereits nach und nach verlässt. Der politische Kurs strebt eindeutig Richtung Deindustrialisierung. Deutsche Spießbürger möchten sich von der Industrie verabschieden, weil sie glauben, damit der Welt etwas Gutes zu tun. Sie bewegen sich rückwärts, in eine Zeit vor Beginn der Industrialisierung, als städtische Bürger im Mittelalter ihre Heimatstadt mit dem Spieß als Waffe verteidigt haben, daher der Name Spießbürger, und die Kirche die Atomlehre Demokrits verdammt hat. Die Bevölkerung ist Spießbürgern auf den Leim gegangen und wird dafür bitter bezahlen.

In der Literatur erscheinen die Spießer als selbstzufriedene Menschen, die unter anderem einer oberflächlichen Geselligkeit frönen, sich gerne in Vereinen aufhalten, sich durch Verrat, Dünkel, Besserwisserei und Aufgeblasenheit oder als autoritätshörige Opportunisten auszeichnen.

Die Ironie der Geschichte: Ausgerechnet die Sorge um den menschengemachten Klimawandel ist weltweit der Anstoß dafür, die Kernenergie auszubauen und die damit verbundene technische und intellektuelle Herausforderung anzunehmen. Dass Deutschland von der Kernenergie im eigenen Land nichts mehr wissen will, der Stationierung von Atomwaffen aber ebenso zustimmt wie dem Import von Strom aus Kernkraftwerken des Auslands, ist typisch für die Bedeutung, die Spießbürger im modernen Sinne haben: Engstirnige Personen, “die sich durch geistige Unbeweglichkeit” und “ausgeprägte Konformität mit gesellschaftlichen Normen auszeichnen.”

Auf die weltweite Entwicklung wird die Verabschiedung Deutschlands aus dem Kreis kultivierter Industrienationen keinen Einfluss haben, die Lücke der einstmals bedeutenden Kulturnation wird von Russland und asiatischen Ländern, insbesondere von China, aber auch von den USA und anderen europäischen Staaten in den nächsten Jahrzehnten geschlossen werden.

 

Faina Faruz

 

Quellen:

 

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Klimaforscher fordern Renaissance der Kernkraft

Renommierte Klimaforscher fordern die Renaissance der Kernkraft. Dies klingt merkwürdig angesichts der Tatsache, dass weltweit zurzeit 432 Kernkraftwerke in Betrieb, 70 im Bau, 173 in Planung und 314 vorgeschlagen sind. Der Schrecken der Unglücksfälle in Tschernobyl in Fukshima ist jedoch an keinem Land spurlos vorübergegangen.

Nach der Katastrophe von Fukushima hatte China den Bau von Kernkraftwerken unterbrochen, um die Sicherheitsmaßnahmen zu verbessern. Verzichten wird China auf die Kernenergie jedoch nicht, da sie als eine saubere Energiequelle gilt, mit der die Umweltverschmutzung durch thermische Energie reduziert werden kann. Beim Ausbau werde China nur die sichersten Reaktor-Typen und die modernsten verfügbaren Technologien nutzen. “Wir haben später mit der Entwicklung der Kernenergie begonnen, daher können wir einiges aus den Erfahrungen anderer Länder lernen”, meint Zhu Zhiyuan, Vizepräsident der Shanghai-Zweigstelle der Chinesischen Akademie der Wissenschaften und Vizepräsident der Chinesischen Gesellschaft für Atomphysik, der an der Technischen Universität München promoviert hat.

Die Kernkraft brauche eine Renaissance, sagen Umweltschützer und Klimaforscher, denn nur so könnten die CO2-Emissionen gesenkt werden. Vier Wissenschaftler, darunter James Hansen, der von 1981 bis 2013 das Goddard Institute for Space Studies der Nasa leitete und bereits in den achtziger Jahren vor den Folgen des Klimawandels warnte. Sie appellieren in einem offenen Brief an Politiker und Umweltschutzorganisationen weltweit, sich für die Entwicklung sicherer Atomkraftwerke einzusetzen.

Sichere und bezahlbare Kernkraftwerke sind in nahezu allen Industrie- und Schwellenländern ein Kernthema, auch in Deutschland, trotz des Atomausstiegsbeschlusses. Zuletzt berichtete am Montag der Focus (Print-Ausgabe) über zwei moderne Reaktorkonzepte, ein amerikanisches und ein deutsches.

Die lesenswerte, ausführliche Version der Kurzfassung im Fokus ist hier nachzulesen:

Thilo Spahl: Atomkraft. Die Neuerfindung der Kernenergie.

Als “sichere Kernkraftwerke” der neuen Generation gelten Flüssigsalz-Kernkraftwerke, bei denen eine Kernschmelze wie in Tschernobyl oder Fukushima ausgeschlossen ist. Der Reaktor steht nicht unter Druck. Bei einem Stromausfall wird die Kettenreaktion physikalisch unterbrochen, die Salzschmelze fließt in ein Auffangbecken, kühlt ab und erstarrt. Focus: “Mit einem Flüssigsalz-Reaktor in der Nachbarschaft muss sich auch niemand ängstigen: Solche Meiler sind GAU-sicher.”

Das Funktionsprinzip der Flüssigsalzreaktoren ist schon seit über 40 Jahren bekannt. Alle Bestandteile wurden über fünf Jahre im laufenden Betrieb erprobt, das Konzept wurde jedoch aus politischen Gründen nicht weiter verfolgt. Moderne technische Entwicklungen, wie beispielsweise der Dual Fluid Reaktor DFR, knüpfen an diesen Vorlagen an, wobei der DFR weltweit eine Besonderheit auffweist: Er arbeitet mit getrennten Kreisläufen, bei sehr hoher Temperatur, bis zu 1000 Grad/C, und Leistungsdichte. Aus dem spaltbaren Material kann er bis zu hundertmal mehr Energie herausholen als ein konventioneller Leichtwasserreaktor und Strom für weniger als einen Cent pro Kilowattstunde produzieren, laut seinen Erfindern.

Zum Nachlesen:

Bücher zum Bestellen:

Lamframboise_l
Tucker_l
Diamandis_l

 

VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Ein neues Konzept für einen Kernreaktor – Der Dual Fluid Reaktor

Bei der Spaltung eines Atomkerns wird 100 Millionen mal so viel Energie freigesetzt wie bei der Verbrennung eines Kohlenstoffatoms. In Anbetracht dieses Verhältnisses ist es erschreckend, dass heutige Nukleartechnik nur 3-4 mal so effektiv Strom erzeugt wie Kohle- und Gaskraftwerke (siehe dazu auch die begutachtete Veröffentlichung zu Erntefaktoren, Preprint hier). Natürlich ist für die Nutzung eines Energieträgers mit derartig hoher Energiedichte auch ein höherer Aufwand erforderlich, insbesondere für die Förderung von Uran und Thorium verglichen mit Kohle, Gas und Öl. Die eigentliche Ursache dieses extremen Missverhältnisses liegt jedoch im militärischen Ursprung der Kerntechnik. Dort zur Perfektion entwickelt, verlieren viele Konzepte, allem voran die Verwendung fester Brennelemente, ihren Bezug, wenn sie auf zivile Anwendungen wie die großflächige Stromversorgung angewendet werden. Für das Militär steht eben die Wirtschaftlichkeit nicht im Vordergrund, sondern die Effektivität im Kriegseinsatz.

Mit dem Dual Fluid Reaktor stellen die Mitglieder des Instituts für Festkörper-Kernphysik (IFK) Berlin ein neues inhärent sicheres Nuklearkonzept vor, das von Anfang an auf optimale zivile Nutzung ausgerichtet war. In der nun abgeschlossenen vierjährigen Konzeptionierungsphase wurden Materialien, Bearbeitungstechniken sowie vergangene Reaktorkonzepte insbesondere der sogenannten Generation IV auf den Prüfstand gestellt. Leitfaden war dabei nicht die inkrementelle Verbesserung vorhandener Systeme oder Konzepte, sondern ein kompletter Neuentwurf nach dem heutigen Stand der Technik und Wissenschaft mit dem Ziel einer Kostenoptimierung. Ausgangspunkt ist eine vor 2 Jahren eingereichte Patentschrift, die auf der Grundidee von zwei umlaufenden Flüssigkeiten, einer für den Brennstoff und einer für die Wärmeabfuhr, basiert. Durch den dadurch möglichen kompakten und integralen Kraftwerksbau ergeben sich Effizienzsteigerungen um einen Faktor 20 gegenüber heutigen Leichtwasserreaktoren. Der DFR wurde auf der IAEA-Konferenz FR13 (4.-7. März 2013 in Paris) erstmalig einem breiteren Fachpublikum vorgestellt. Das Konferenzproceeding kann hier heruntergeladen werden.

Generation IV

Der nukleare Brennstoffträger unterliegt in einem laufenden Reaktorkern ständigen Veränderungen wie Abbrand und Anhäufung von Spaltprodukten. Die angemessene technische Antwort wäre demnach eine kontinuierliche Aufarbeitung, was nur durch einen zirkulierenden flüssigen Brennstoff kostengünstig machbar ist. Die Verwendung fester Brennelemente für zivile Anwendungen war von Anfang an eine Entwicklung, die auf die militärische Festlegung zurückzuführen ist, deren Weiterentwicklung aber heute nicht mehr zu rechtfertigen ist. Auch die vom Generation-IV-Forum festgesetzten Reaktorkonzepte, die frühestens ab 2030 in Betrieb gehen sollen, sind nichts anderes als lange in der Vergangenheit entwickelte Typen mit militärischem Hintergrund. Dies erklärt, warum 5 der 6 Konzepte wiederum feste Brennelemente enthalten. Siehe dazu auch nebenstehende Abbildung.

Gen4-Zeitleiste

Generation IV: Alles Sinnvolle schon längst gelaufen (grüne Balken). SFR = Sodium-Cooled Fast Reactor, VHTR = Very High Temperature Reactor, LFR = Lead-Cooled Fast Reactor, MSR = Molten-Salt Reactor. Der gasgekühlte schnelle Reaktor (GFR) ist redundant, und der “Supercritical Water-Cooled Reactor” SCWR ist nur ein „Upgrade” im konventionellen Teil auf den Stand heutiger Kohlekraftwerke.

Flüssiger nuklearer Brennstoff kann z.B. in metallischer Form vorliegen, in der historischen Entwicklung hatte sich aber zunächst die Verbindung von Aktiniden mit Fluor oder Chlor zu Salzen, die bei einigen Hundert °C flüssig werden, als die günstigere Variante bewährt. Schon in den 1960er Jahren lief am Oak Ridge National Laboratory das „Molten Salt Reactor (MSR) Experiment”, MSRE. Es wurde erfolgreich abgeschlossen, musste aber der Entwicklung von metallgekühlten Reaktoren weichen. Zwar wurden letztere dann in den USA auch nicht konsequent umgesetzt, aber die Entwicklung von Flüssigsalzreaktoren kam dadurch zum Erliegen. Außerdem waren Leichtwasserreaktoren mit Brennstäben bereits wirtschaftlich. In letzter Zeit ist das MSRE-Konzept wiederentdeckt worden, wie z.B. im WAMSR von Transatomic Power, und imMSR-Konzept der Generation IV, allerdings sind hier bis auf den Übergang zu Schnellspaltreaktoren keine grundsätzlich neuen Entwicklungen zu verzeichnen. Dies gilt auch für das beschleunigergetriebene System GEM*STAR der amerikanischen ADNA Corporation.

Beim MSRE wurde das Hauptaugenmerk auf einen flüssigen homogenen Reaktorkern gelegt, ohne dass die dadurch entstehenden Nachteile Beachtung fanden. Das Flüssigsalz sollte dabei auch gleichzeitig die Wärme abführen. Was zunächst eine Vereinfachung darstellte führte jedoch zur weitgehenden Aufhebung der Vorteile von Flüssigsalzen, welche nun extrem schnell zirkulieren mussten, um die Nutzwärme abführen zu können. Und damit nicht genug, der eigentliche Brennstoff musste extrem verdünnt werden, um nicht zu viel Wärme zu produzieren. Durch die schnelle Zirkulation konnte das Flüssigsalz nicht bei laufendem Reaktor aufgearbeitet werden. Außerdem war durch die Verdünnung die Aufarbeitung sehr aufwendig und die Leistungsdichte stark beschränkt, was den Konstruktionsaufwand erheblich vergrößerte und die energetische und damit wirtschaftliche Effizienz stark reduzierte. Dies hat sich in den neueren MSR-Konzepten grundsätzlich nicht verbessert.

Das Dual-Fluid-Prinzip

DFR-Kern
DFR-Reaktorkern. Gezeigt ist auch die unmittelbare Umgebung mit dem Bleikreislauf. Das Blei läuft von unten in den Kern und wird durch das Restzerfallswärme-Reservoir vorgeheizt.

Im Konzept des Dual Fluid Reaktors, DFR, wird dieses Manko nun korrigiert, indem die beiden Funktionen Brennstoff und Wärmeabfuhr getrennt werden. Auch wenn die Gesamtanordnung dadurch zunächst komplizierter wird, ergeben sich erhebliche Vereinfachungen an anderen Stellen sowie Synergien, die zu einer enormen Effizienzsteigerung führen. Mit dem Wegfall der Doppelfunktion des Salzes kann man sich nun ganz auf die Ausnutzung der Vorteile einer Online-Aufbereitung eines unverdünnten Brennstoffflüssigkeit einerseits, sowie einer effektiven Wärmeabfuhr andererseits konzentrieren. Für letzteres eignen sich besonders Flüssigmetalle.

Die Verwendung von salzförmigen Spaltmaterialien als Brennstoff ist übrigens nicht zentraler Bestandteil des DFR-Patents, entscheidend ist vielmehr, dass im Reaktorkern allgemein zwei Flüssigkeiten laufen, wovon eine den Brennstoff bereitstellt und die andere die Nutzwärme abführt (Kühlmittel). Insofern ist der DFR nicht automatisch ein Flüssigsalzreaktor, im Gegenteil, eine Brennstoffzufuhr in Form von Flüssigmetallen würde die Effizienz nochmals erheblich steigern und an die Grenze des Potentials der Kernspaltung führen. Als erster Entwicklungsschritt des DFR, insbesondere in Hinsicht auf die Online-Aufbereitung, ist die Verwendung von Flüssigsalzen jedoch zunächst die bevorzugte Variante. Dadurch vereinfacht sich der Entwicklungsaufwand, und ein kommerzielles Kraftwerk kann früher realisiert werden.

DFR-Kraftwerk

Kraftwerk um den Dual Fluid Reaktor. Gezeigt ist die grobe Skizze eines 1,5-MWe-Referenzkraftwerks mit superkritischem Wasser im konventionellen Teil.

Zur Wärmeabfuhr eignet sich Blei besonders gut. Es wird kaum durch den hohen Neutronenfluss aktiviert und kann ohne Zwischenkreislauf direkt in den konventionellen Teil geleitet werden, wo sich der Wärmetauscher befindet. Die Arbeitstemperatur beträgt 1000 °C, was eine effektive Stromproduktion ermöglicht. Bei diesen Temperaturen öffnet sich auch die gesamte Kette der Prozesschemie, da nun die wettbewerbsfähige Produktion von Wasserstoff möglich wird. Damit können auch sehr kostengünstig synthetische Kraftstoffe als Benzinersatz hergestellt werden.

Die Aufbereitung findet im Containment des Reaktors im automatischen Betrieb statt. Bevorzugt sind hier Methoden der fraktionierten Destillation und Rektifikation, wie sie in der Großindustrie täglich zum Einsatz kommen. Für das Flüssigsalz des DFRs genügt allerdings eine Kleinanlage, die „Pyrochemical Processing Unit”, PPU, die direkt in den Kreislauf des Flüssigsalzes mit dem Reaktorkern verbunden ist. Dort erfolgt die Auftrennung nach Siedepunkten, was sehr hoher Temperaturen (bis zu 2000 °C) bedarf, wobei die Restzerfallswärme der hochradioaktiven Spaltprodukte hierbei sogar unterstützend wirkt (im nächsten Abschnitt wird auf die Abfuhr der Restzerfallswärme unter dem Aspekt der Sicherheit allgemein eingegangen). Die Bearbeitung findet selbstverständlich gekapselt und im wesentlichen automatisch statt, was erheblich höhere Aktivitäten als z.B. beim PUREX-Verfahren erlaubt. Eine hohe Aktivität und damit Zerfallswärmeleistung ist bei den hohen Temperaturen sogar hilfreich.

Sicherheitsaspekte beim DFR

Bei einem Kernkraftwerk muss in allen Betriebszuständen, insbesondere während des Betriebs und der Kühlphase nach Abschaltung, der sichere Einschluss von radioaktivem Inventar gewährleistet sein. Bei heutigen Leichtwasserreaktoren sind lediglich die Kapselungen bzw. Umbauten (Containment) sowie das Installieren von Wasserreservoiren als Wärmespeicher die einzigen passiven Sicherheitselemente. Alle anderen Systeme sind aktiv und können technisch bedingt versagen. Durch ihre redundante wie diversitäre Auslegung erreicht man dennoch eine hohe Sicherheit, allerdings zu hohen Kosten, was durch die Hochdruckumgebung noch verstärkt wird.

Das DFR-Konzept nutzt hier alle Vorteile praktisch druckloser Flüssigkeiten, wobei die Brennstoffflüssigkeit (Salz) kaum Wärmetransportaufgaben hat. Neben Mehrfachcontainments, die auf niedrigen Druck auslegbar und damit kostengünstig sind, können Flüssigkerne wesentlich einfacher als feste Kerne separiert und bearbeitet werden. Nachzerfallswärmekomponenten können so problemlos nach Wärmeleistung aufgeteilt werden. Daher befinden sich im DFR-Kern überwiegend kurzlebige Spaltprodukte (Halbwertszeiten bis zu einigen Stunden, d.h. hohe Wärmeleistung), und in einem weiteren Zwischenlagerbehälter (ebenfalls im Bleikreislauf, s. Abbildung „DFR-Reaktorkern”) solche mit Halbwertszeiten von bis zu einigen Monaten. Im eigentlichen Spaltproduktelager (Zwischenlager, s. Abb. „Kraftwerk…”) außerhalb des Bleikreislaufs liegen zumeist Stoffe mit Halbwertszeiten von Jahren bis Jahrzehnten.

Kern und Behälter im Blei sind an einer aktiv gekühlten Schmelzsicherung angeschlossen. Wenn nun der gesamte Strom ausfällt, wird die Nachzerfallswärme problemlos durch das Blei ausschießlich über Naturkonvektion abgeführt. Kann auch das Blei seine Wärme nicht mehr abgeben (Ausfall aller Sekundärkreisläufe), so wird dieses und damit das Salz heiß und die Schmelzsicherung wird durchlässig. Beide Salzreservoire fließen dann in tiefergelegene Tanks, die von gut leitendem Material hoher volumetrischer Wärmekapazität (z.B. Eisen) umgeben sind, welches die Zerfallswärme für mehrere Wochen aufnehmen und dann passiv an die Umgebung abgeben kann. In jedem Fall ist keine aktive Sicherung, die versagen könnte, vorhanden.

Auch im Betrieb wirken vor allem passive Sicherungssysteme. Leckagen sind sicherheitstechnisch eher unproblematisch: Sowohl in Blei eintretendes Sekundärkühlmittel (hier Wasser) als auch das Blei selbst können wegen ihrer geringen Aktivität keinen radiologischen Schaden anrichten. Wegen der hohen Bleimasse wäre der Eintritt auch bei hohem Druck nicht schlagartig. Blei erstarrt bei Austritt in den konventionellen Bereich schnell. Wegen des, im Vergleich zu Reaktoren mit festen Kernen, sehr stark negativen Reaktivitätskoeffizienten kann keine Leistungsexkursion erfolgen. Designbedingt nimmt der flüssige Kern außerhalb des Kernbereichs (auch im Blei wegen des Dichteunterschieds) immer einen unterkritischen Zustand ein, sollte der äußerst seltene Fall eines Lecks im Kern auftreten. In diesem Fall muss nur die aktive Kühlung der Schmelzsicherung abgeschaltet werden.

Bei natriumgekühlten Reaktoren wird ein Großteil der Sicherheitstechnik und damit der Kosten auf die Beherrschung bzw. Vermeidung eines Natriumbrandes verwendet. Dieses Problem entfällt durch die Bleikühlung beim DFR völlig.

Gute Neutronenökonomie und ihre Folgen

Im DFR behalten die Neutronen wegen der vielen massereichen Atomkerne (Aktinide und Blei) ihre hohe Energie. Blei selbst absorbiert ohnehin wenig Neutronen, und die Neutronenverluste in den Strukturmaterialien sind bei diesen Energien sehr gering. Auf der anderen Seite werden durch die schnellen Neutronen aber besonders viele davon nachgebildet, nämlich durchschnittlich 3 oder mehr pro Spaltvorgang. Bei fast allen Reaktoren ist das weniger, bei Leichtwasserreaktoren deutlich weniger. Diese Neutronen werden nun unterschiedlich „verbraucht”.

Eines der 3 Neutronen wird zur Aufrechterhaltung der nuklearen Kettenreaktion benötigt, ein weiteres, um den eigenen Spaltstoff nachzubrüten. Da die Verluste gering sind (weniger als 0,5 Neutronen durch unerwünschte Einfänge), bleiben noch mindestens 0,5 Neutronen pro Spaltung für andere Anwendungen übrig, mehr als bei allen anderen Reaktoren. Mit diesem hohen Überschuss kann man nun in erheblich kürzeren Zeiträumen als bei anderen „schnellen Brütern”, z.B. Plutonium (hier nicht waffenfähig), erbrüten und damit zügig die nächste Generation von Reaktoren installieren. Auch der Thorium-Uran-Prozess mit seiner kernphysikalisch bedingt niedrigeren Neutronenausbeute ist aufgrund der sehr guten Neutronenökonomie des DFR im Vergleich zu anderen Schnellspaltreaktoren besonders gut handhabbar. Alternativ können auch sehr effektiv problematische langlebige Spaltprodukte z.B. aus heutigen Reaktoren transmutiert und damit abgebaut werden. Sehr effizient ist aber auch die Bildung erwünschter Radioisotope, etwa für die Medizin. Die PPU erfüllt hier eine wichtige Aufgabe, die ständige chemische Trennung von Stoffen untereinander und vom Brennstoff, was auch die Minimierung von „Neutronenfängern”, sogenannten Neutronengiften und damit auch die Neutronenverluste reduziert.

Letzteres ist übrigens auch für die Leistungsregelung des DFR sehr günstig. Wegen des permanent immer sehr „sauberen” Reaktorkerns muss man keine Spaltstoffreserven einbringen, die über ein kompliziertes Regelsystem (Steuerstäbe) während ihres Abbrandes ausgeglichen werden müssten, wie etwa in heute gängigen Leichtwasserreaktoren. Dies begünstigt auch einen sogenannten unterkritischen Betrieb, bei dem fehlende Neutronen durch ein Beschleunigersystem nachgeliefert werden („Accelerator Driven Subcritical System”, ADS). Je näher man sich stabil der Kritikalität nähern kann, desto kleiner darf der Beschleuniger sein. Beim DFR könnte der Beschleuniger nun auf eine Länge von wenigen Metern reduziert werden, im Vergleich z.B. mit dem belgischen ADS-Projekt „MYRRHA”, welches einen mehrere 100 Meter langen Beschleuniger benötigt.

Zudem reagiert ein flüssiger Reaktorkern auf eine Temperaturerhöhung sehr schnell mit Ausdehnungen, genauso auch das Blei, was diesen außen umgibt. Die Abstände der Atomkerne werden bei Temperaturerhöhung größer, wodurch gleich zwei Wahrscheinlichkeiten sinken, zum einen, dass ein Neutron im Flüssigsalz eine Spaltung induziert, zum anderen, dass es am Blei reflektiert wird. Somit fällt die Leistung mit einer Temperaturzunahme sehr schnell ab. Dieser negative “Temperaturkoeffizient” ist durch das Dual-Fluid-Prinzip so stark ausgeprägt, dass bereits innerhalb eines Temperaturanstiegs von wenigen 10 Kelvin die Leistung eingestellt werden kann. Die Spaltrate folgt somit zügig der Leistungsentnahme, welche wiederum durch die Geschwindigkeit der Bleizirkulation eingestellt werden kann. Da dieser Mechanismus ohne technisches Eingreifen aufgrund physikalischer Gesetze immer funktioniert, kann der Reaktor auch nicht durch einen unkontrollierten Leistungsanstieg “durchgehen” – er ist in diesem Punkt inhärent sicher.

Blei und Salz bei 1000 °C

Materialien, die den Bedingungen im Reaktorkern (Blei, Salz, 1000 °C, Neutronenfluss) standhalten können sind seit Jahrzehnten bekannt. Dazu gehören insbesondere Legierungen aus der erweiterten Gruppe der Refraktärmetalle. Diese überaus widerstandsfähigen Legierungen konnten in der Vergangenheit nicht hinreichend verarbeitet werden. Mittlerweile ist die Fertigungstechnik jedoch so weit vorangeschritten, dass derartige Legierungen in allen Bereichen der Industrie, insbesondere der chemischen Industrie, im Maschinenbau und auch in der Luftfahrt immer mehr Anwendungen finden. Als weitere Option kommen neue Keramiken als Beschichtungen oder in Form neuartiger faserverstärkter Komposit-Werkstücke hinzu. Mikrokristalline Schäden durch den hohen Neutronenfluss sowie thermischer Stress werden bei der hohen Temperatur automatisch ausgeheilt (Ausglüheffekt). In der PPU gibt es sogar noch weniger Einschränkungen, da Neutronenversprödung und Wärmeleitung hier keine Rolle mehr spielen.

Filament

Wolfram-Legierung als Glühdraht. Legierungen mit Refraktärmetallen sind äußerst widerstandsfähig. (Bildquelle: Wikipedia)

Hochleistungslegierungen, auch refraktäre, können durch neue Elektronenstrahlschweißverfahren, Hochdichtsinter- und Lasertechniken hergestellt werden. Gerade die Laserbehandlung sorgt hier für eine hochreine Kristallgitterstruktur (Glattschmelzen), ein für die Korrosionsbeständigkeit wichtiger Faktor. Für Ventile im Flüssigsalz können Kontaktflächendichtungen verwendet werden, sie werden nur etwa stündlich betätigt. Die immer noch hohen Kosten spielen beim DFR eine untergeordnete Rolle, da der Materialbedarf deutlich geringer als bei Leichtwasserreaktoren ist (mehr zu den Materialien hier). Insgesamt müssen bekannte, neue Fertigungsprozesse, die dann auch eine Wartung erlauben würden, etabliert werden. Heute werden sie wegen mangelnder Nachfrage selten genutzt, ihre technische Machbarkeit wurde jedoch in den letzten Jahrzehnten bewiesen. Die Standfestigkeit ist hier ein zentraler Punkt, denn die nuklearen Aspekte im DFR erlauben es ja gerade, den Kern nicht tauschen zu müssen. Dieser Punkt wird von Kritikern oft verkannt, die implizit von der bei festen Brennelementen üblichen „Wegwerftechnik” ausgehen, und somit eine sehr eingeschränkte Sicht auf die Materialvielfalt entwickelt haben.

Da beim flüssigen Brennstoffsalz eine ständige Aufbereitung möglich ist, sammeln sich wenig Spaltprodukte an, somit ist deren Aufnahme im Salz unproblematisch. Die niedrige Spaltstoffkonzentration im Kern vermindert dort die Korrosion, flüchtiges Jod und Cäsium können in der PPU abgezogen und chemisch stabil gebunden werden. Das Salz muss für den Betrieb flüssig bleiben, was im Kern durch die Kritikalitätsbedingungen und in der PPU durch die Nachzerfallswärme gegeben ist. Sicherheitstechnisch ist ein Erstarren des Salzes unproblematisch, es muss dann nur (z.B. induktiv) vorgeheizt werden.

Verspannungen?

Die hohen Betriebstemperaturen liegen im Duktilbereich von Refraktärmetallen, was eine Versprödung stark hemmt. Zudem können im Kern auch noch hochbeständige Beschichtungen in Betracht gezogen werden. Diverse Refraktärlegierungen sind bereits zwischen 300 °C und 500 °C (oder niedriger) duktil, z.B. MHC (Molybdän-Hafnium-Carbon mit 98 Massenprozent Molybdän) oder TZM (Titan-Zirkon-Molybdän mit 99 Massenprozent Molybdän), ggf. mit Zugaben von Rhenium im 1%-Bereich. Die Betriebstemperatur (Eintritts- wie Austrittstemperaturen) liegt immer zwischen 850 °C und 1100 °C. Sobald das Salz (auf mindestens °900 C vorgeheizt) langsam in den Kernbereich eingelassen wurde, wird es kritisch. Durch den sehr stark negativen Reaktivitätskoeffizienten pendelt sich sofort eine Gleichgewichtstemperatur ein, und es kann nicht mehr erstarren (Schmelztemperatur um 800 °C). Die Längenausdehnung von Refraktärlegierungen entspricht denen von Keramiken, hier gibt es keine Verspannungen.

Fertigung

Der gesamte Kern (Leergewicht um 15 bis 25 Tonnen) kann in einer Fabrik gefertigt und an Ort und Stelle ausschließlich mit Schraubverbindungen verbaut werden. Die genannten Fertigungstechniken (inklusive evtl. Beschichtung) kommen nur in der Fabrik zum Einsatz. Eventuell wird der Kern geeignet segmentiert, um einzelne, defekte Rohre leichter auszutauschen. Da im gesamten Reaktor nur wenige 100 Tonnen refraktäre Materialien (davon 80 bis 90% einfache Geometrie) zum Einsatz kommen, darf hier der Aufwand hoch sein, auf die Gesamtkosten wirkt sich das nicht nennenswert aus. Bei den Beschichtungen gibt es korrosionsfeste Materialien (SiC, Titandiborid,…), die eine dem Nickel ähnliche Wärmeleitfähigkeit haben. Als Isolierung können Fächer-, Faltbleche usw. verwendet und der Kern muss wegen des hohen Neutronenflusses sowieso zusätzlich in Beton verpackt werden.

Der konventionelle Teil: Erweiterte Möglichkeiten

Das längerfristige Ziel ist die Entwicklung eines Direktwärmetauschers von Blei zu Gas, sowie die direktere Wandlung in Elektrizität über MHD-Generatoren, wie auch in der Patentschrift beschrieben. Für die zügige Umsetzung ist hingegen die Verwendung von superkritischem Wasser, wie es bereits in 500 Kohlekraftwerken zum Einsatz kommt, vorgesehen. Dies ist das Referenzkraftwerk, wie es auch in den Skizzen und Videos zum DFR gezeigt ist.

Anders als im Reaktorkern können beim Wärmetauscher zu Wasser oder Gas auch mit Oxiden verstärkte Refraktärbasislegierungen (z.B. Molybdän mit Zugaben etwa von Cer- bzw. Yttriumoxid und/oder Silizium bzw. Bor im Prozentbereich) verwendet werden. Diese zeichnen sich bei guter Warmfestigkeit durch eine sehr gute Bearbeitbarkeit, Dehnbarkeit und Duktilität bei niedrigen Temperaturen aus, was die Rissgefahr deutlich reduziert. Ihre deutlich erhöhte Oxidationsbeständigkeit sorgt bei einem Riss in der schützenden Beschichtung noch für viele Stunden Betrieb, ehe diese Stelle gewartet werden muss.

Im Falle eines Lecks verläuft eine Reaktion von Blei mit Wasser selbst bei diesen Temperaturen sehr langsam, zudem ist das Blei auch nach langer Betriebszeit kaum radioaktiv (etwa wie Natururan, Halbwertszeit 3h). Die mitlaufende Überwachung der Neutronenflussdichteverteilung des Reaktors zeigt Veränderungen sehr schnell und präzise an; was gewissermaßen eine on-line Neutronentomographie ist. Die nun veränderte Bleikorrosion bekommt man mit Zusätzen (sogenannten Gettern oder Inhibitoren) in den Griff. Selbst in bleigekühlten U-Boot-Reaktoren, obgleich mit anderen Betriebsparametern, gab es solche Probleme aber nicht.

Die Eigenschaften des DFRs insbesondere des Flüssigmetallkühlmittels mit seiner hohen Wärmetransportfähigkeit ermöglichen mehrere neue Entwicklungsrichtungen im konventionellen Teil, die insofern interessant sind, da die Kosten für Turbinen und Generatoren dominierend sind aufgrund ihres komplexen mechanischen Aufbaus wegen der rotierenden Komponenten. Schon für die Generation IV Kraftwerke werden daher direktere Wandler anvisiert, wie MHD-Generatoren für flüssigmetall- und flüssigsalzgekühlte Reaktoren. Da MHD-Generatoren keine beweglichen Teile habe, sind sie günstiger als Turbinen. Andererseits ist ihr Wirkungsgrad begrenzt und die Restwärme sollte immer noch in einer Wasserdampfturbine genutzt werden, die allerdings viel kleiner ist als in einem System nur mit Turbinen. Eine weitere Möglichkeit, für die die Betriebsparameter des DFRs sehr gut passen, sind AMTECs (Alkali-metal thermal to electric converter / Alkalimetall thermisch zu elektrisch Konverter), die thermische Energie direkt in elektrische umwandeln können ohne den Zwischenschritt der Umwandlung in mechanische Energie und somit im Konverter auf bewegliche Teile ebenfalls verzichten können.

Was soll der Spaß kosten?

Vom IFK wurde eine grobe Kostenschätzung für ein Serienkraftwerk für ein 500-MW- als auch für ein 1.500-MW-Kraftwerk (elektrisch) erstellt, siehe auch hier. Trotz des hohen Bearbeitungsaufwand bewegen sich die Gesamtkosten für den Reaktorkern plus Primärkreislauf plus PPU im Bereich von 250 Mio. € (für 1.500-MW), was nur etwa 20% der Gesamtkosten ausmacht, die von den Turbinen dominiert werden. Bezogen auf die installierte Leistung ergeben sich dann Kosten von 1 €/Watt, deutlich unter denen eines modernen Kohlekraftwerks. Eine Test- und Demonstrationsanlage wird im nuklearen Teil sicher ein Vielfaches davon kosten, dafür muss der konventionelle Teil nicht vollständig aufgebaut werden.

Die Betriebskosten von gut 40 Mio. €/Jahr werden zu 50% von der Wartung für den konventionellen Teil dominiert, während die Brennstoffkosten durch die vollständige Nutzung praktisch keine Rolle mehr spielen. Weitere Kosten kommen nicht hinzu, denn Anreicherung, Aufbereitung sowie Entsorgung durch externe Anlagen entfallen. Dies führt in der Summe zu Stromgestehungskosten (Overnight, d.h. ohne Zinsen) von 0,6 ct/kWh. Entsprechend würde die prozesschemische Herstellung von synthetischen Kraftstoffen mit dem DFR etwa 10 (Ammoniak) bis 20 (Hydrazin) Cent je kg kosten, was auf den Energiegehalt von Mineralölkraftstoffen umgerechnet, 20 bis 40 Cent je Liter entsprechen würde.

Das Dual-Fluid-Prinzip ermöglicht durch die Autoregulation und die rein passive Restzerfallswärmeabfuhr die Vereinbarkeit von inhärenter Sicherheit und hoher Leistungsdichte, was für eine gute Wirtschaftlichkeit unabdingbar ist.

Fazit

Erntefaktor-DFR
Erntefaktor verschiedener Energietechniken (siehe Publikation hier) im Vergleich mit dem Dual Fluid Reaktor.

Bei der beabsichtigten Implementierung neuer Techniken stellt sich zuvorderst die Frage, ob es offene Fragestellungen oder gar Unmöglichkeiten gibt, die in grundlegenden Gesetzmäßigkeiten der Natur liegen, so wie wir sie heute kennen. Wenn dies zutrifft, handelt es sich um Grundlagenforschung, wie bei alternativen Wegen zur kontrollierten Kernfusion (d.h. nicht ITER) oder der Energiegewinnung durch Umwandlung von Hadronen in Leptonen mit 99,9% Umwandlung von Masse in Energie (vorstellbares Ergebnis der Forschung am LHC des CERN). Trifft dies nicht zu, handelt es sich nicht mehr um Forschung sondern um ein technisches Entwicklungsprojekt. Auch im Laufe dessen werden unvorhergesehene Probleme auftauchen, die man dann löst, häufig verbunden mit einem Mehraufwand an Zeit und Kosten, was in der heutigen Zeit als willkommener Anlass genommen wird, eine neue Technik zu beerdigen, oder erst gar nicht zu entwickeln („Man weiß ja gar nicht ob das funktioniert!”). Aber auch im schlimmsten Fall einer objektiv technisch unüberwindbaren Hürde, wurden Erkenntnisse und Fertigkeiten gewonnen, die woanders eingesetzt oder später aufgegriffen einen Mehrwert schaffen. Dies alles wussten unsere Vorfahren noch; nur dadurch wurde der Aufbruch des 19. und 20. Jahrhunderts möglich. So bewertet ist der DFR ein rein technisches Entwicklungsprojekt.

Da die in einer Volkswirtschaft verwendete Energietechnik der Beginn und Multiplikator der industriellen Produktionskette ist, bestimmt ihre Effizienz die Produktivität der gesamten Kette. Von der Produktivität der Industrie wird direkt das Wohlstandsniveau bestimmt. Wird wie jetzt in Deutschland die Energieversorgung auf Techniken wie Wind, Sonne und Biomasse umgestellt, die nur ein Zehntel der Effizienz der fossilen Kraftwerke haben, bedeutet das eine Reduktion des Lebensstandards auf ein Zehntel, also das Niveau des Mittelalters. Der DFR ist in der Lage, die Effizienz der Kernenergie um mindestens eine Größenordnung zu steigern und damit die fossilen Kraftwerke um zwei Größenordnungen zu übertreffen. Dies schafft die notwendige Voraussetzung für die Steigerung des Wohlstandsniveaus um den gleichen Faktor. Nur wenn die Kernenergie der Gesellschaft einen offensichtlichen Vorteil bietet, kann sie sich durchsetzen. Dass sie das bisher nicht oder zu wenig bietet, ist der eigentliche Grund des schleppenden Ausbaus seit den 70er Jahren.

 

Götz Ruprecht, IFK

(Das IFK ist ein unabhängiges Forschungsinstitut, das weder private noch öffentliche Unterstützung erhält.)

VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)
image_pdfimage_print